Pesquisando no meu baú digital, encontrei o texto que segue. Foi escrito no século XX para sustentar a minha participação num painel sobre "A Geometria nos Programas e as Conexões". Este painel fez parte do segundo Encontro Regional de Professores de Matemática, CoviMat 99, que se realizou no dia 23 de Abril, na Universidade da Beira Interior, na Covilhã. O Encontro foi organizado pelo Núcleo Regional da Covilhã da Associação de Professores de Matemática. O painel foi moderado pelo meu ilustre colega Manuel Saraiva e nele intervieram o Augusto Carvalho, a Cristina Loureiro, a Teresa Colaço e a Isabel Coelho.
É bom recordar:
Passaram quase doze anos, existem Novos Programas de Matemática. O Geogebra veio colocar-se a par do Cabri e do Sketchpad, a Internet põe à disposição de professores e alunos recursos fabulosos. Creio todavia que este texto conserva alguma actualidade.
As condições de trabalho dos professores mudaram, não foram apenas o século, o milénio e até a década. Não creio que a Educação tenha mudado para melhor.
Lembro as alterações preconizadas por Paulo Abrantes.
Onde ficou o sonho de alguns?
Algumas reflexões sobre o Ensino / Aprendizagem da Geometria e Conexões com outras áreas da Matemática
A Geometria é um ramo privilegiado da Matemática por estar estreitamente ligada à realidade envolvente e à experiência dos alunos, o que permite uma maior facilidade na construção de conceitos, a partir de situações concretas. As actividades geométricas são inspiradoras de intuições e necessárias na passagem do particular ao abstracto. Nestas idades (2º e 3º ciclos), é fundamental a criação de situações que favoreçam o raciocínio indutivo, sustentado na formulação e testagem de conjecturas.Nesta perspectiva, a Geometria será uma das áreas da Matemática que o desenvolvimento das Tecnologias de Informação e Comunicação (TIC) tornou mais acessíveis. Ao referir as TIC estou, essencialmente, a considerar software dinâmico, como o Cabri-Géomètre e o Sketchpad, onde os desenhos adquirem movimento, favorecendo a passagem à figura. A “geometria do software” possibilita, assim, o desenvolvimento das capacidades de explorar, enunciar e testar hipóteses.No entanto, a utilização de outros materiais (de uso corrente, Tangram, geoplanos, variados puzzles, instrumentos de medição e desenho, ...; enfim, um mundo posto à nossa disposição!) é, igualmente, necessária pela manipulação que proporciona e indispensável mesmo nos casos em que as escolas não têm computador ou os têm em número insuficiente. Não foi por não existirem essas máquinas fabulosas que a Geometria deixou de se desenvolver e de constituir um dos mais importantes ramos da Matemática. Não é por elas existirem que a Geometria é melhor tratada (?) hoje em dia, apesar da relevância que os actuais programas lhe conferem (aparece em primeiro lugar, a par com os Números e Cálculo). Manusear, observar, comparar, descobrir, construir, traçar são objectivos importantes que podem ser alcançados através da exploração geométrica. Mas, não continua esta a ser “deixada para trás”, em muitos casos, pela pressão do cumprimento dos conteúdos programáticos referentes à Aritmética / Álgebra? No entanto, quantos aspectos geométricos não podem ser abordados / explorados quando se “dá”, por exemplo, as fracções: rectângulos, círculos, triângulos, ... E a construção de figuras com o Tangram não consolidará o conceito de número fraccionário, pela relação entre a área das diferentes peças, ao mesmo tempo que permite conhecer triângulos e quadriláteros?Assiste-se assim, frequentemente, a um isolamento da Geometria (e não só) apesar das conexões que permite dentro da própria Matemática e com outros ramos do saber - o rectângulo de ouro na arquitectura, em particular, e na arte, em geral é um dos casos mais badalados; mas, como o utilizamos nós, professores de Matemática?Comecei por escrever que a Geometria é um ramo privilegiado da Matemática por estar estreitamente ligada à realidade envolvente e à experiência dos alunos. Será (por direito próprio)? Não temos o dever de “conceder” aos alunos, “neste virar de milénio”, o direito a uma alfabetização matemática que não passe, quase exclusivamente, pelo dominar de algoritmos, ao quase total controle do professor sobre o que é ensinado e não aprendido?
Passaram quase doze anos, existem Novos Programas de Matemática. O Geogebra veio colocar-se a par do Cabri e do Sketchpad, a Internet põe à disposição de professores e alunos recursos fabulosos. Creio todavia que este texto conserva alguma actualidade.
Trabalho realizado por alunos com software dinâmico para estudo de pavimentações |
As condições de trabalho dos professores mudaram, não foram apenas o século, o milénio e até a década. Não creio que a Educação tenha mudado para melhor.
Lembro as alterações preconizadas por Paulo Abrantes.
Onde ficou o sonho de alguns?
Sem comentários:
Enviar um comentário